• support@answerspoint.com

Avoiding != null statements in Java?

1781

The idiom I use the most when programming in Java is to test if object != null before I use it. This is to avoid a NullPointerException. I find the code very ugly and it becomes unreadable.

Is there a good alternative to this?

Update: Pan, I was not clear with my question. I want to address the necessity to test every object if you want to access a field or method of this object. For example:

if (someobject != null) {
    someobject.doCalc();
}

In this case I will avoid a NullPointerException, and I don't know exactly if the object is null or not. So my code get splattered with these tests.

  • Java

  • asked 8 years ago
  • B Butts

2Answer


0

This to me sounds like a reasonably common problem that junior to intermediate developers tend to face at some point: they either don't know or don't trust the contracts they are participating in and defensively overcheck for nulls. Additionally, when writing their own code, they tend to rely on returning nulls to indicate something thus requiring the caller to check for nulls.

To put this another way, there are two instances where null checking comes up:

  1. Where null is a valid response in terms of the contract; and

  2. Where it isn't a valid response.

(2) is easy. Either use assert statements (assertions) or allow failure (for example,NullPointerException). Assertions are a highly-underused Java feature that was added in 1.4. The syntax is:

assert <condition>

or

assert <condition> : <object>

where <condition> is a boolean expression and <object> is an object whose toString()method's output will be included in the error.

An assert statement throws an Error (AssertionError) if the condition is not true. By default, Java ignores assertions. You can enable assertions by passing the option -ea to the JVM. You can enable and disable assertions for individual classes and packages. This means that you can validate code with the assertions while developing and testing, and disable them in a production environment, although my testing has shown next to no performance impact from assertions.

Not using assertions in this case is OK because the code will just fail, which is what will happen if you use assertions. The only difference is that with assertions it might happen sooner, in a more-meaningful way and possibly with extra information, which may help you to figure out why it happened if you weren't expecting it.

(1) is a little harder. If you have no control over the code you're calling then you're stuck. If null is a valid response, you have to check for it.

If it's code that you do control, however (and this is often the case), then it's a different story. Avoid using nulls as a response. With methods that return collections, it's easy: return empty collections (or arrays) instead of nulls pretty much all the time.

With non-collections it might be harder. Consider this as an example: if you have these interfaces:

public interface Action {
  void doSomething();
}

public interface Parser {
  Action findAction(String userInput);
}

where Parser takes raw user input and finds something to do, perhaps if you're implementing a command line interface for something. Now you might make the contract that it returns null if there's no appropriate action. That leads the null checking you're talking about.

An alternative solution is to never return null and instead use the Null Object pattern:

public class MyParser implements Parser {
  private static Action DO_NOTHING = new Action() {
    public void doSomething() { /* do nothing */ }
  };

  public Action findAction(String userInput) {
    // ...
    if ( /* we can't find any actions */ ) {
      return DO_NOTHING;
    }
  }
}

Compare:

Parser parser = ParserFactory.getParser();
if (parser == null) {
  // now what?
  // this would be an example of where null isn't (or shouldn't be) a valid response
}
Action action = parser.findAction(someInput);
if (action == null) {
  // do nothing
} else {
  action.doSomething();
}

to

ParserFactory.getParser().findAction(someInput).doSomething();

which is a much better design because it leads to more concise code.

That said, perhaps it is entirely appropriate for the findAction() method to throw an Exception with a meaningful error message -- especially in this case where you are relying on user input. It would be much better for the findAction method to throw an Exception than for the calling method to blow up with a simple NullPointerException with no explanation.

try {
    ParserFactory.getParser().findAction(someInput).doSomething();
} catch(ActionNotFoundException anfe) {
    userConsole.err(anfe.getMessage());
}

Or if you think the try/catch mechanism is too ugly, rather than Do Nothing your default action should provide feedback to the user.

public Action findAction(final String userInput) {
    /* Code to return requested Action if found */
    return new Action() {
        public void doSomething() {
            userConsole.err("Action not found: " + userInput);
        }
    }
}
  • answered 8 years ago
  • Gul Hafiz

0

If you use (or planning to use) JetBrains IntelliJ IDEA, a Java IDE, you can use some particular annotations developed by them.

Basically, you've got @Nullable and @NotNull.

You can use in method and parameters, like this:

@NotNull public static String helloWorld() {
    return "Hello World";
}

or

@Nullable public static String helloWorld() {
    return "Hello World";
}

The second example won't compile (in IntelliJ IDEA).

When you use the first helloWorld() function in another piece of code:

public static void main(String[] args)
{
    String result = helloWorld();
    if(result != null) {
        System.out.println(result);
    }
}

Now the IntelliJ IDEA compiler will tell you that the check is useless, since the helloWorld() function won't return null, ever.

Using parameter

void someMethod(@NotNull someParameter) { }

if you write something like:

someMethod(null);

This won't compile.

Last example using @Nullable

@Nullable iWantToDestroyEverything() { return null; }

Doing this

iWantToDestroyEverything().something();

And you can be sure that this won't happen. :)

  • answered 8 years ago
  • Gul Hafiz

Your Answer

    Facebook Share        
       
  • asked 8 years ago
  • viewed 1781 times
  • active 8 years ago

Best Rated Questions